Eliminating Sandwich Attacks with the Help of Game Theory

Lioba Heimbach, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

Decentralized exchanges (DEXes)

Decentralized exchanges (DEXes)

trading along price curve

trading along price curve

trading along price curve

T: trade $X \rightarrow Y$

unexpected slippage = unexpected price increase/decrease

slippage tolerance specifies maximum price movement

unexpected slippage = unexpected price increase/decrease

slippage tolerance specifies maximum price movement

trade fails if slippage tolerance exceeded

Sandwich attack game

maximize profit

victim transaction

victim transaction

transaction size (δ_{v_x})

victim transaction

transaction size (δ_{v_x})

slippage tolerance (s)

attacker fees

transaction fee (f)

the attacker's profit cannot exceed the victim's loss

avoid sandwich attack

avoid sandwich attack

avoid transaction failure

unattackable trade

unattackable trade

 $s < s_a$ to ensure transaction is unattackable

unattackable trade

 $s < s_a$ to ensure transaction is unattackable

unattackable trade

 $s < s_a$ to ensure transaction is unattackable

expected transaction re-sending cost

 $s_r < s$ expected transaction re-sending cost does not exceed sandwich attack cost

setting slippage algorithm

Calculate s_a and s_r if $s_r < s_a$: set $s = s_a - \varepsilon$, where $\varepsilon \to 0^+$ else: set $s = s_r$

setting slippage algorithm

Calculate s_a and s_r if $s_r < s_a$: set $s = s_a - \varepsilon$, where $\varepsilon \to 0^+$ else: set $s = s_r$

setting slippage algorithm

Calculate s_a and s_r if $s_r < s_a$: set $s = s_a - \varepsilon$, where $\varepsilon \to 0^+$ else:

set $s = s_r$

setting slippage algorithm

Calculate s_a and s_r if $s_r < s_a$: set $s = s_a - \varepsilon$, where $\varepsilon \to 0^+$ else: set $s = s_r$

Cost comparison

USDC ↔ ETH

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$2,267 \cdot 10^{-4}$	∞
100	0,000	$3,545 \cdot 10^{-5}$	∞
1000	$3,554 \cdot 10^{-6}$	$1,\!632\cdot 10^{-5}$	4.5924
10000	$1,434 \cdot 10^{-4}$	$5,103 \cdot 10^{-3}$	35.5718
100000	$3,\!178\cdot 10^{-4}$	$5,\!013\cdot 10^{-3}$	15.7735

$\mathsf{USDC} \leftrightarrow \mathsf{USDT}$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$8,310 \cdot 10^{-5}$	∞
100	0,000	$1,335 \cdot 10^{-5}$	∞
1000	$2,086 \cdot 10^{-6}$	$6,381 \cdot 10^{-6}$	3.0588
10000	$2,612 \cdot 10^{-5}$	$5,101 \cdot 10^{-3}$	195.2647
100000	$4,\!150\cdot 10^{-5}$	$5,\!011\cdot 10^{-3}$	120.7390

$\mathsf{BTC} \leftrightarrow \mathsf{ETH}$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$7,\!440\cdot 10^{-5}$	∞
100	$2,490 \cdot 10^{-6}$	$1,515 \cdot 10^{-5}$	6.0858
1000	$5,829 \cdot 10^{-6}$	$9,229 \cdot 10^{-6}$	1.5832
10000	$4,132 \cdot 10^{-5}$	$5,\!105\cdot 10^{-3}$	123.5364
100000	$6,575 \cdot 10^{-5}$	$5,\!015\cdot 10^{-3}$	76.2684

siz	e [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
	10	0,000	$5,707 \cdot 10^{-5}$	∞
	100	$4,470 \cdot 10^{-6}$	$2,032 \cdot 10^{-5}$	4.5450
	1000	$1,\!659\cdot 10^{-5}$	$1,\!664\cdot 10^{-5}$	1.0031
10	0000	$1,\!637\cdot 10^{-5}$	$5,\!114\cdot 10^{-3}$	312.3494
100	0000	$1,834 \cdot 10^{-5}$	$5,024 \cdot 10^{-3}$	273.9272

Cost comparison

$\mathsf{USDC} \leftrightarrow \mathsf{ETH}$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$2,267 \cdot 10^{-4}$	∞
100	0,000	$3,545 \cdot 10^{-5}$	∞
1000	$3,554 \cdot 10^{-6}$	$1,\!632\cdot 10^{-5}$	4.5924
10000	$1,434 \cdot 10^{-4}$	$5,\!103\cdot 10^{-3}$	35.5718
100000	$3,\!178\cdot 10^{-4}$	$5,013 \cdot 10^{-3}$	15.7735

$\mathsf{USDC} \leftrightarrow \mathsf{USDT}$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$8,310 \cdot 10^{-5}$	∞
100	0,000	$1,335 \cdot 10^{-5}$	∞
1000	$2,086 \cdot 10^{-6}$	$6,381 \cdot 10^{-6}$	3.0588
10000	$2,612 \cdot 10^{-5}$	$5,101 \cdot 10^{-3}$	195.2647
100000	$4,\!150\cdot 10^{-5}$	$5,011 \cdot 10^{-3}$	120.7390

$BTC \leftrightarrow ETH$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$7,\!440\cdot 10^{-5}$	∞
100	$2,490\cdot 10^{-6}$	$1,515 \cdot 10^{-5}$	6.0858
1000	$5,\!829\cdot 10^{-6}$	$9,229 \cdot 10^{-6}$	1.5832
10000	$4,\!132\cdot 10^{-5}$	$5,\!105\cdot 10^{-3}$	123.5364
100000	$6,575 \cdot 10^{-5}$	$5,015 \cdot 10^{-3}$	76.2684

L	INk	(↔	۰E٦	ΓH
---	-----	----	-----	----

siz	e [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
	10	0,000	$5,707 \cdot 10^{-5}$	∞
	100	$4,\!470\cdot 10^{-6}$	$2,032 \cdot 10^{-5}$	4.5450
	1000	$1,\!659\cdot 10^{-5}$	$1,\!664\cdot 10^{-5}$	1.0031
1	0000	$1,\!637\cdot 10^{-5}$	$5,\!114\cdot 10^{-3}$	312.3494
10	0000	$1,834 \cdot 10^{-5}$	$5,024 \cdot 10^{-3}$	273.9272

Cost comparison

USDC ↔ ETH

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$2,267 \cdot 10^{-4}$	∞
100	0,000	$3,545 \cdot 10^{-5}$	∞
1000	$3,554 \cdot 10^{-6}$	$1,632 \cdot 10^{-5}$	4.5924
10000	$1,434 \cdot 10^{-4}$	$5,103 \cdot 10^{-3}$	35.5718
100000	$3,\!178\cdot 10^{-4}$	$5,013 \cdot 10^{-3}$	15.7735

$\mathsf{USDC} \leftrightarrow \mathsf{USDT}$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$8,310 \cdot 10^{-5}$	∞
100	0,000	$1,335 \cdot 10^{-5}$	∞
1000	$2,086 \cdot 10^{-6}$	$6,381 \cdot 10^{-6}$	3.0588
10000	$2,612 \cdot 10^{-5}$	$5,101 \cdot 10^{-3}$	195.2647
100000	$4,\!150\cdot 10^{-5}$	$5,011 \cdot 10^{-3}$	120.7390

$BTC \leftrightarrow ETH$

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$7,440 \cdot 10^{-5}$	∞
100	$2,490 \cdot 10^{-6}$	$1,515 \cdot 10^{-5}$	6.0858
1000	$5,829 \cdot 10^{-6}$	$9,229 \cdot 10^{-6}$	1.5832
10000	$4,132 \cdot 10^{-5}$	$5,105 \cdot 10^{-3}$	123.5364
100000	$6,\!575\cdot 10^{-5}$	$5,\!015\cdot 10^{-3}$	76.2684

L	NK	\leftrightarrow	EΤ	Η
---	----	-------------------	----	---

size [\$]	fractional cost ours	fractional cost UNI	ratio cost UNI/ours
10	0,000	$5,707 \cdot 10^{-5}$	∞
100	$4,\!470\cdot 10^{-6}$	$2,032 \cdot 10^{-5}$	4.5450
1000	$1,\!659\cdot 10^{-5}$	$1,\!664\cdot 10^{-5}$	1.0031
10000	$1,\!637\cdot 10^{-5}$	$5,\!114\cdot 10^{-3}$	312.3494
100000	$1,\!834\cdot 10^{-5}$	$5,024 \cdot 10^{-3}$	273.9272

Conclusion

Thank You! Questions & Comments?

Lioba Heimbach, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

unattackable transaction

unattackable transaction

$$s \cdot \delta_{v_y} \ge 2b$$

unattackable transaction

$$s \cdot \delta_{v_y} \ge 2b$$

victim's maximum loss

unattackable transaction

 $s \cdot \delta_{v_y} \ge 2b$ attacker's minimum costs

unattackable transaction

$$s_a = \frac{2b}{\delta_{v_y}}$$

 $s < s_a$ ensures that transaction is not attackable

$$\sum_{i=0}^{\infty} p(s, \delta_{v_x})^i \left((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \right)$$

$$\sum_{i=0}^{\infty} p(s, \delta_{v_x})^i \left((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \right)$$

transaction failure likelihood

$$\sum_{i=0}^{\infty} p(s, \delta_{v_x})^i \left((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \right)$$
Ethereum transaction
fee for re-sending

$$\sum_{i=0}^{\infty} p(s, \delta_{v_x})^i \left((l+m)b + \frac{E(s|\tilde{s} > s)\delta_{v_y}}{\sqrt{s}} \right)$$

expected price change

$$\sum_{i=0}^{\infty} p(s, \delta_{v_x})^i \left((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \right)$$

$$= \frac{p(s,\delta_{v_x})}{1-p(s,\delta_{v_x})} \Big((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \Big)$$

expected transaction re-sending cost

$$= \frac{p(s,\delta_{v_x})}{1-p(s,\delta_{v_x})} \Big((l+m)b + E(s|\tilde{s} > s)\delta_{v_y} \Big)$$

$$s_r = \frac{p(s, \delta_{v_x})}{1 - p(s, \delta_{v_x})} \left(\frac{(l+m)b}{\delta_{v_y}} + E(s|\tilde{s} > s)\delta_{v_y}\right)$$

 $s_r < s_a$ expected transaction re-sending cost does not exceed sandwich attack cost

p=0.01	1	USDC≓W		VETH USDC≓U		SDT WBTC≓WE		ETH DPI⇔WETH	
		μ	η	μ	η	μ	η	μ	η
window	/ size								
	200	$-2.37 \cdot 10^{-3}$	0.637	$-8.04 \cdot 10^{-4}$	0.512	$-1.03 \cdot 10^{-3}$	0.611 ·	$-1.65 \cdot 10^{-3}$	0.656
	2000	$-2.74 \cdot 10^{-3}$	0.093	$-8.95\cdot10^{-4}$	0.06	$-1.22 \cdot 10^{-3}$	0.106 -	$-2.03 \cdot 10^{-3}$	0.078
	20000	$-2.93 \cdot 10^{-3}$	0.014	$-9.27\cdot10^{-4}$	0.014	$-1.37 \cdot 10^{-3}$	0.007 -	$-2.13 \cdot 10^{-3}$	0.045
p=0.1		USDC≓W	/ETH	USDC≓U	ISDT	WBTC≓V	VETH	DPI≓WE	ТН
•		μ	η	μ	η	μ	η	μ	η
window	/ size								
	200	$-3.49 \cdot 10^{-4}$	0.042	$-7.35\cdot10^{-6}$	0.335	$-1.85 \cdot 10^{-5}$	0.194 -	$-4.36 \cdot 10^{-5}$	0.213
	2000	$-2.99 \cdot 10^{-4}$	0.001	$-1.24 \cdot 10^{-6}$	0.314	$-4.34 \cdot 10^{-6}$	0.148 -	$-2.18 \cdot 10^{-5}$	0.186
	20000	$-2.56 \cdot 10^{-4}$	0.003	0.00	0.310	$-1.04 \cdot 10^{-6}$	0.114 -	$-7.81 \cdot 10^{-6}$	0.143

Lower bound for slippage tolerance (s_r)

Lower bound for slippage tolerance (s_r)

 s_r smaller for low volume pools

Slippage tolerance comparison

Slippage tolerance comparison

Outlook: Uniswap V3

concentrated liquidity

Outlook: Uniswap V3

concentrated liquidity

Outlook: Uniswap V3

concentrated liquidity

liquidity providers choose price range $[p_a, p_b]$ in which they would like to provide liquidity

Outlook: Uniswap V3

concentrated liquidity

liquidity providers choose price range $[p_a, p_b]$ in which they would like to provide liquidity

