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Unexpected slippage 

unexpected slippage
=

unexpected price increase/decrease

price curve : 𝑥 ⋅ 𝑦 = 𝑘

slippage tolerance specifies 
maximum price movement

trade fails if slippage 
tolerance exceeded
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Optimal sandwich attack

slippage tolerance (𝑠) 

transaction fee (𝑓) block fee (𝑏) 

victim transaction

attacker fees

transaction size (𝛿𝑣𝑥) 
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Optimal sandwich attack

the attacker’s profit cannot exceed the victim’s loss
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𝑠𝑟 < 𝑠 expected transaction re-sending 
cost does not exceed sandwich attack cost

𝑠 < 𝑠𝑎 to ensure transaction is unattackable

Setting slippage

unattackable trade 

expected transaction re-sending cost
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Conclusion



Thank You!
Questions & Comments?
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Setting slippage

𝑠𝑎 =
2𝑏

𝛿𝑣𝑦

𝑠 < 𝑠𝑎 ensures that 
transaction is not attackable

unattackable transaction

𝑠 ⋅ 𝛿𝑣𝑦 ≥ 2𝑏
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𝑠𝑟 < 𝑠𝑎 expected transaction 
re-sending cost does not 

exceed sandwich attack cost
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Computing lower bound for slippage 
tolerance (𝑠𝑟)

p=0.01

p=0.1
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Lower bound for slippage tolerance (𝑠𝑟)

𝛿𝑣𝑦 = $100000𝛿𝑣𝑦 = $10

𝑠𝑟 smaller for low volume pools 
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