
Received 13 June 2020; revised 22 July 2020; accepted 11 August 2020. Date of publication 14 August 2020; date of current version 15 September 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.3016768

PIBES - A Competing-Flow-Aware Protocol for
Real-Time Video Applications

LIOBA HEIMBACH1, LINGFENG GUO2, RUDOLF K. H. NGAN2,
AND JACK Y. B. LEE 2 (Senior Member, IEEE)

1Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland

2Department of Information Engineering, Chinese University of Hong Kong, Hong Kong

CORRESPONDING AUTHOR: J. Y. B. LEE (e-mail: yblee@ie.cuhk.edu.hk)

ABSTRACT With the recent explosive growth in online classes and virtual meetings, real-time video
communication has quickly become essential to everyday life. Despite its widespread deployment, our
investigation revealed that current protocols, ranging from industry standards such as WebRTC to state-
of-the-art research such as Salsify, frequently perform sub-optimally in the presence of competing flows
at the same bottleneck. For example, WebRTC’s throughput can degrade from 73% to a mere 8% of
the available bandwidth when competing with just two TCP flows. We tackle this problem in this work
by introducing a novel PIBES protocol for real-time video applications to operate in the presence of
competing TCP traffic. PIBES employs a new inband bandwidth estimation method that can quickly and
accurately measure the bottleneck link bandwidth even with competing flows. Moreover, PIBES can detect
the absence or presence of competing flows, which enables it to maximize video quality when there is
no competing flow and to maintain acceptable video quality while sharing bandwidth with competing
flows. Experiments demonstrate that PIBES achieves throughput and delay comparable to the state-of-art
protocols, but outperforms them significantly in the presence of competing TCP flows.

INDEX TERMS Real-time, video communication, congestion control, bitrate control, bandwidth
estimation.

I. INTRODUCTION

ALREADY comprising the largest share of Internet
traffic with 75% in 2017, the proportion of video traffic

is expected to increase even further to 82% by 2022 [1]. In
particular, live video traffic increases progressively – mak-
ing up a more substantial fraction of video traffic. Real-time
video traffic is predicted to increase 15-fold between 2017
and 2022 [1]. The growing popularity of video conferencing
applications such as Skype, FaceTime, Google Hangouts,
and Zoom, as well as live video streaming applications such
as Facebook Live, Instagram Live, and Periscope, are drivers
behind this increase in real-time video traffic.
Real-time video traffic presents additional challenges as

its performance is affected by both throughput and delay.
However, the Transmission Control Protocol (TCP), which
represents 85% to 90% of Internet traffic [2], has been
optimized for goodput [3]. While suitable for Web brows-
ing and file transfer, as well as traffic with weak real-time

characteristics such as on-demand video streaming systems,
TCP’s loss-based congestion control algorithm and retrans-
mission mechanism are inherently not suitable for throughput
and delay-sensitive traffic such as real-time video.
In light of this, video conferencing applications pri-

marily streamed video over UDP with custom-designed
congestion control schemes implemented inside the appli-
cation [4]. To enhance interoperability, Google recently
developed the WebRTC [5] framework that supports both
standalone and browser-based real-time applications, further
fueling their growth. However, our investigation uncov-
ered an often-neglected issue when operating real-time
applications in practice.
It has recently become common for multiple users to

share an Internet connection at home via a home network.
Consequently, real-time video traffic must coexist and com-
pete for bandwidth against other data traffics such as Web or
non-real-time video streaming. In one experiment, we built

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 1267

HTTPS://ORCID.ORG/0000-0002-3583-6428

HEIMBACH et al.: PIBES - COMPETING-FLOW-AWARE PROTOCOL FOR REAL-TIME VIDEO APPLICATIONS

TABLE 1. Impact of competing traffic on WebRTC and salsify.

a testbed with a shared Internet link of 4Mbps bandwidth.
We initiated one real-time video flow together with zero to
two competing TCP flows to measure their performance.
The results, summarized in Table 1, demonstrated a severe
limitation of current real-time protocols – their throughput
performance can degrade significantly even in the presence
of just a single TCP flow. While WebRTC can achieve a rea-
sonably high bandwidth utilization of 73% alone, it declined
to a mere 24% with one, and 8% with two competing TCP
flows at the bottleneck link. This sharp decline in link utiliza-
tion is not limited to WebRTC; we repeated the experiment
with Salsify [6] – a recently presented state-of-the-art real-
time protocol and observed similar performance degradations
in the presence of competing TCP flows.
The implication is that video quality in real-time applica-

tions will significantly degrade whenever there are competing
traffics. In severe cases, the achievable throughput can drop
below the minimum required by the video encoder, leading
to loss of the video feed entirely. In retrospect, this does
occur in practice, but our experiments showed that lack of
bandwidth is not the only cause.
In this work, we tackle this challenge by developing a

novel packet inter-arrival time bandwidth estimation for short
latency protocol (PIBES) for transporting real-time video traf-
fic in the presence of competing cross-traffic. PIBES employs a
new inband bandwidth estimation method that can quickly and
accurately measure the bottleneck link bandwidth even with
competing flows. Moreover, PIBES can detect the absence or
presence of competing flows, which enables it to maximize
video quality when there is no competing flow and to maintain
acceptable video quality through explicit control of bandwidth
sharing with competing flows. Experiments demonstrate that
PIBES achieves throughput and delay comparable to the state-
of-the-art protocols and outperforms them significantly in the
presence of competing traffics.

II. BACKGROUND AND RELATED WORK
Traditional loss-based TCP congestion control [7]–[9] is
unsuited for real-time applications. Bandwidth probing intro-
duces periodic queuing delays, as the bottleneck queue
is continuously filled up and drained. Thus, inducing
significant latency – making it inapt for delay-sensitive
traffic.
In a quest to avoid the oscillations inherent to loss-based

protocols, various delay-aware congestion control algorithms
have surfaced in recent years. TCP Vegas [10] and Fast
TCP [11] rely on round trip time (RTT) to detect congestion.
However, reverse traffic can reduce link utilization of RTT-
based congestion control algorithms [12]–[14].

Congestion control algorithms based on one-way delay
do not suffer from this issue. TCP Santa Cruz [15] uses
delay estimation along the forward path to infer congestion.
However, when competing against loss-based flows, one-way
delay-based congestion control algorithms often lose band-
width to their loss-based counterparts [16]. LEDBAT [17]
also uses one-way delay for congestion detection but is
affected by the latecomer effect [18], where the first flow can
be starved by a second flow entering the same bottleneck
link.
WebRTC [5] was initiated to standardize protocols and

APIs for real-time services among Web browsers. WebRTC
has been incorporated into major Web browsers, including
Chrome and Firefox. Three algorithms have been designed
for streaming live video using RTP/RTCP over UDP as part
of the WebRTC initiative: SCReAM [19], NADA [20], and
GCC [21], [22]. SCReAM is based on LEDBAT, similar to
its predecessor, SCReAM has short latency but low channel
utilization [23]. NADA uses a composite congestion signal,
which consists of delay, loss, and explicit congestion notifi-
cation markings. While NADA achieved the highest channel
utilization of the three algorithms, it suffers from the late-
comer effect [23]. Similar to SCReAM, GCC largely relies
on one-way delay measurements. GCC achieves good fair-
ness property and maintains a reasonable packet sending rate
in the presence of losses, but is slow in tracking bandwidth
variations [23].
Apart from delay, another approach to congestion control

is via bandwidth estimation. TCP Westwood [24] first uses
available bandwidth estimations from packet inter-arrival
times for congestion control. However, TCP Westwood faces
problems in the presence of reverse traffic due to ACK com-
pression. More recently, Google proposes TCP BRR [25],
which also uses available bandwidth estimation to regulate
its sending rate. A recent study [26] showed that fairness
amongst TCP BBR flows could be affected by flow RTTs
and bottleneck buffer size. Moreover, TCP BBR tends to
starve competing TCP flows when the bottleneck buffer is
small [27].
Sprout [28] was designed for interactive applications

requiring high throughput and low delay, and uses packet
inter-arrival times at the receiver to estimate how many
bytes the sender can send. In doing so, Sprout assumes
that the sender always has something to send, which is not
the case in real-time video applications [29]. Most recently,
Salsify [6] expanded Sprout-EWMA to become video-aware.
Additionally, Salsify integrates the transport protocol with
the video encoder’s rate-control algorithm to achieve more
precise rate control.
While many of the previous work on real-time transport

can achieve good throughput with low delay, they can only
do so in the absence of competing flows. As discussed in
Section I, competing traffic is now the norm rather than the
exception. Therefore, a real-time protocol’s behavior in the
presence of competing flows is essential to its performance
in practice.

1268 VOLUME 1, 2020

FIGURE 1. Congestion and rate control architecture.

III. SYSTEM DESIGN
Designed for high-quality real-time video flows, PIBES aims
at achieving high utilization while keeping video frame delay
short in the absence of competing flows. On the other hand,
when competing flows are presence at the shared bottleneck
link, we want PIBES to reasonably share the bandwidth with
its counterparts while avoiding starvation. PIBES employs an
inband method to continuously estimate the available band-
width and sense the presence/absence of competing traffic
to dynamically adapt the video bitrate and sending rate to
achieve the above goals.
The congestion and rate control architecture in PIBES

is depicted in Figure 1. The receiver records the incoming
packets’ timestamps to compute a smoothed inter-arrival time
and detect competing flows sharing the bottleneck link. This
information is returned to the sender through ACKs. With
this information, the sender calculates the target frame size
Fc for the video encoder and a sending rate Rc for pacing the
outgoing packets. The video encoder captures and encodes
video frames according to a preset frame rate. Note that
the encoded frame size, denoted by F, may deviate slightly
from the target in practice. The sending engine packetizes
the video frame into UDP datagrams and then transmits them
in a two-part transmission schedule. We present details of
the system components in the following subsections.

A. PACKET INTER-ARRIVAL TIME BANDWIDTH
ESTIMATION
As reviewed in Section II, bandwidth estimation has
been employed in numerous previous work, e.g., TCP
Westwood [24], BBR [25], Sprout [29], and Salsify [6].
Nevertheless, our investigation reveals that existing band-
width estimation algorithms often converge slowly towards
the available bandwidth and may not be able to adapt to the
changing network condition quickly. This is because outgo-
ing packets are often paced implicitly (via TCP ACKs) or
explicitly (via sending rate control) so that it takes consider-
able time for the measured bandwidth to converge towards
the available bandwidth.
Another approach is to transmit packets in a burst at a

high datarate to allow more accurate measurement of the link
bandwidth. This approach is particularly suitable in real-time
video communication as packets in a frame are generated

FIGURE 2. Two-part transmission scheduler.

simultaneously by the video encoder at the sender, which
can then be transmitted in a burst. However, with today’s
increased video quality (e.g., 720P or 1080P), sending a
large video frame in a single transmission burst could cause
router buffer overflow, leading to unnecessary congestion
losses. Therefore, we propose a novel two-part transmission
scheduler depicted in Figure 2 to enable accurate bandwidth
estimation via initial short transmission burst, followed by
paced transmission to prevent congestion loss.
Specifically, a fixed number of packets, nb, are sent out

in a burst at the beginning of each frame. Here,

nb = max
(
nmin, min

(⌈nf
2

⌉
, nmax

))
, (1)

where nf is the number of packets in the frame, and
[nmin, nmax] is the range of the number of packets in a burst.
The lower limit nmin is to ensure sufficient accuracy in

bandwidth estimation in case the video frame is too small.
The upper limit nmax is to keep the burst size small for large
video frames so that the burst transmission will not cause
unnecessary network congestion.
After the initial burst, the sender paces the remaining

packets (Figure 2) with an inter-departure time of d seconds,
where d is the most recent smoothed inter-arrival time the
sender received – see (2). Note that the pacing rate is set to
the estimated link bandwidth instead of video bitrate so as to
minimize frame delivery delay while preventing congestion
at the bottleneck link.
At the receiver, the initial packet burst in each frame is

then used as a packet train to maintain an exponential moving
average of the packet inter-arrival time: with each arrival the
receiver calculates the smoothed inter-arrival time, di, from

di =
{
ti i = 0
α · ti + (1 − α) · di−1 i > 1,

(2)

where i ∈ N enumerates the time interval observations of
burst packets across frames and ti is the most recent observed
time interval.
The smoothed packet inter-arrival time is then returned

to the sender via ACKs. There, the rate control block
periodically estimates the path bandwidth,

Bk = P

d
, (3)

from the most recent smoothed inter-arrival time, d, reported
by the receiver, and the packet size P. k ∈ N identifies the
frame to be encoded at the sender.

B. COMPETITION-AWARE RATE ADAPTATION
The target sending rate is set by the rate control block using
the estimated link capacity and knowledge about the pres-
ence of competing flows at the bottleneck link. While most

VOLUME 1, 2020 1269

HEIMBACH et al.: PIBES - COMPETING-FLOW-AWARE PROTOCOL FOR REAL-TIME VIDEO APPLICATIONS

FIGURE 3. Packets from competing flows (blue) are more likely to interject
in-between paced packets than burst packets.

previous competition detection algorithms relied on monitor-
ing changes in queue build-up speed [30]–[32], the two-part
transmission scheduler enables a far simpler and quicker way
to detect competing traffic.
In particular, the presence of competing flows can be

directly inferred from packet inter-arrival times of the paced
packets monitored by the receiver. The intuition is that pack-
ets from competing flows will more likely interject between
paced video packets due to their lower data rate (Figure 3).
The interjected packets will then increase the inter-arrival
times of the paced video packets. Thus, by comparing the
smoothed inter-arrival times of paced versus burst packets,
the presence of competing flows can then be detected.
Specifically, we can compute the smoothed inter-arrival

times for paced packets, denoted by d̃j, similar to (2), from

d̃j =
{
t̃j j = 0
α · t̃j + (1 − α) · d̃j−1 j > 1,

(4)

where t̃j is the observed inter-arrival time for paced packets
and j ∈ N enumerates the observations across frames. Let d̃
be the latest smoothed inter-arrival time for paced packets.
If the d̃ for paced packets exceeds the d for burst packets
by more than β (e.g., 10%) then the receiver declares the
presence of competing flows and informs the sender via
ACK packets.
Combining the knowledge of the path bandwidth and the

presence of competing traffic at the bottleneck link, the rate
control block computes the target sending rate from

Rk = max(Rmin, min(sk · Bk,Rmax)). (5)

Here, k ∈ N corresponds to the frame number, [Rmin,Rmax] is
the rate range of the encoder, and sk ∈ [0, 1] is the proportion
of link capacity the sender intends to use which is governed
by the Finite State Machine (FSM) in Figure 4.
The FSM is where competition-awareness is implemented.

Specifically, let c = {0, 1} be a binary variable representing
the presence (c = 1) or absence (c = 0) of competing flows.
The target bandwidth share is initialized to s0 = smax and is
updated whenever a new frame is encoded. The FSM oper-
ates in two modes. If there is no competing traffic at the
beginning, it simply transmits video at the maximum band-
width share of smax. We set smax to be slightly smaller than 1

FIGURE 4. Finite state machines to adapt the target bandwidth share sk .

(e.g., 0.95) to prevent overshooting the link capacity due to
bandwidth estimation errors. Being slightly conservative can
also minimize latency when there is no competing traffic.
Once a competing flow is detected (c = 1), sk will be

reduced to sshare, where sshare < smax. Intuitively, sshare con-
trols the target proportion of bandwidth to share with the
competing flows. However, if the competing traffic is intense,
congestion may still occur, leading to long delays and packet
losses. Therefore, PIBES will continuously monitor the RTT
and then further adapt the sending rate according to the
intensity of the competing traffic.
Specifically, let rttk be the average round trip time of

packets in frame k. If it has increased since the last frame,
i.e., rttk > rttk−1, then it indicates that the combined traffic
overshoots the link capacity. To prevent congestion, PIBES
will decrease the send proportion by �− per frame, down
to a lower limit of smin to maintain acceptable video quality.
On the other hand, if rttk decreases, then PIBES will

progressively increase the send proportion by �+ per frame
until the target bandwidth share of sshare is restored. As soon
as the competing flow leaves the network (c = 0), PIBES
will further increase the send proportion by � per frame up
to smax again.
With sk determined, the target sending rate Rk can be

obtained from (5) which enables the rate control block to
compute the target frame size Fck from

Fck =
⌈
Rk · T
P

⌉
· P, (6)

given the target sending rate Rk, the frame interval T , and
the packet size P. Note that PIBES implements forward
erasure correction (FEC) to recover from packet losses, so
the target frame size Fck is inclusive of FEC overheads. FEC
is chosen over retransmission as the latter incurs more delay
which is undesirable in real-time applications. While PIBES

1270 VOLUME 1, 2020

FIGURE 5. Experiment testbed.

also implements retransmission as a last resort, we found
that with a modest amount of FEC (e.g., 10%) it is rarely
needed at all.

IV. PERFORMANCE EVALUATION
In this section, we evaluate PIBES’s performance and com-
pare it to WebRTC and Salsify using the testbed depicted in
Figure 5. Both sender and receiver were in the same machine
so that they are clock-synchronized, which is required for
measuring one-way frame delay. Note that this is purely for
measurement purposes, PIBES itself does not need or rely on
clock synchronization. The sender/receiver machine was a
Dell OptiPlex 990 desktop computer running Linux Ubuntu
18.04. The bottleneck link is emulated using a modified
version of Dummynet.1

As mentioned in Section III, the actual frame size pro-
duced by the video encoder may deviate slightly from the
target frame size Fck . To simulate frame size variations, we
added a random error to the frame size Fk as follows:

Fk = Fck · (1 + εk), (7)

where ε ∼ N (0, 0.025).
The parameters for the FSM in Figure 4 are as follows:

smax = 0.95, � = 0.05, sshare = 0.8, smin = 0.5, �+ = 0.01
and �− = 0.05. For the experiments, we ran Salsify using
the authors’ source code.2 WebRTC was executed through
AppRTC. 3 GCC [21], [22] was employed as the congestion
control algorithm in WebRTC.

A. BANDWIDTH ESTIMATION ACCURACY
We first evaluate the accuracy of PIBES’ inband bandwidth
estimation method. We conducted an experiment with bot-
tleneck link bandwidth of 5Mbps to examine the choice of
parameters and its sensitivity to competing traffic. There are
around 15,000 bandwidth estimation samples, collected over
40 seconds, for each data point.
Two parameters, namely the size of the packet burst and

the value of α for the exponential moving average calculation
of the packet inter-arrival times, can affect estimation accu-
racy. PIBES’ two-part transmission scheduler has a fixed
number of packets at the beginning of each frame sent

1. https://github.com/mclab-cuhk/netmap-ipfw
2. https://github.com/excamera/alfalfa
3. https://appr.tc/

FIGURE 6. Impact of burst size on bandwidth estimation accuracy. α was set to 0.1.

FIGURE 7. Impact of α on bandwidth estimation accuracy. Burst size was set to 6.

in a burst, followed by paced packets. Only packet inter-
arrival times from packets in the initial burst are used for
bandwidth estimation. Figure 6 compares the bandwidth esti-
mation accuracy with respect to the burst size. We observe
that the estimated bandwidth converged to the actual band-
width with a burst size of three packets and stabilized beyond
a burst size of six packets. Thus, we set nmin = 3 to ensure
sufficient bandwidth estimation accuracy - if the video frame
comprises fewer than three packets then bandwidth estima-
tion will be skipped. We set nmax = 6 to improve estimation
accuracy for larger video frames while keeping the burst size
small to avoid congestion.
The impact of the smoothing factor α used in the calcula-

tion of the smoothed packet inter-arrival times is visualized in
Figure 7. Here, one can see that the accuracy and precision of
the estimation decrease as α increases. We adopted α = 0.1
in the rest of the experiments.
Finally, we evaluate the impact of competing TCP traffic

on bandwidth estimation accuracy in Figure 8, as well as
assessing the flow detection accuracy in Figure 9. We ran two
experiments, one with reverse TCP flows (Figure 8(a)) and
another with forward competing TCP flows (Figure 8(b)). In
both cases, an additional TCP flow entered the bottleneck
link every 5 seconds. The results demonstrate that compet-
ing TCP flows in either direction have a negligible impact
on bandwidth estimation accuracy. Figure 9 further shows
PIBES’s competing flow detection accuracy over time. We
see that PIBES detected the competing flow shortly after its
introduction and maintained reasonably consistent detection
performance throughout the latter’s presence. While there
were a few isolated instances of incorrect detection, their
impact is negligible.

B. LIVE VIDEO QUALITY
To evaluate the quality of the live video stream, we consider
both throughput and video latency. Latency is evaluated on

VOLUME 1, 2020 1271

HEIMBACH et al.: PIBES - COMPETING-FLOW-AWARE PROTOCOL FOR REAL-TIME VIDEO APPLICATIONS

FIGURE 8. Impact of competing traffic on bandwidth estimation accuracy.

FIGURE 9. Competing traffic detection performance over time.

a per-frame basis. The application on the receiver side can
only display a frame once all packets have been received.
Thus, for live video applications, delay matters per frame
as opposed to per packet. We define frame delay as the
time it takes for a complete video frame to be transported
from the sender to the receiver, excluding video encoding
and decoding times. The duration of each of the following
experiments is 40 seconds, and the link’s one-way delay is
0.02 seconds.

a) Fixed bandwidth network: We first compare the
performance of PIBES, Salsify, and WebRTC over a fixed-
bandwidth link of 3Mbps and no competing traffic in
Figure 10. Surprisingly, WebRTC’s link utilization is lower
than expected. We could not determine the cause of this, but
we conjecture that the implementation may have an internal
cap on the maximum video bitrate. PIBES and Salsify, on
the other hand, both achieved high link utilization.
Next, we compare frame delay for PIBES and Salsify

in Figure 10(b). We were not able to obtain frame delay
measurements for WebRTC due to implementation limita-
tions. Nevertheless, in a recent work, Fouladi et al. [6]
compared WebRTC’s frame delay to Salsify and found that
WebRTC’s 95th-percentile frame delay was 10.5 times higher
than Salsify.
In Figure 10(b), we also show the minimum frame delay

when sending at 95% of the link capacity. The results show
that PIBES’ average frame delay is slightly lower than
Salsify and very close to the lower bound. Salsify’s frame
delay also exhibited more significant variations, presumably
due to larger fluctuations in frame size.
b) Mobile networks: Next, we evaluate the three protocols

performance over mobile networks. We captured bandwidth
trace data from production 3G and 4G networks and then
feed the bandwidth trace data into our customized dummynet

FIGURE 10. Performance of PIBES, Salsify, and WebRTC over a fixed capacity link
of 3Mbps and one-way delay of 0.02 seconds. The lower bound for frame delay is the
minimum delay for transmitting video data at 95% of the link bandwidth, same as
smax configured in PIBES.

emulator to reproduce the same bandwidth variations in our
experiments.
We first consider performance over 3G network in

Figure 11(a) and Figure 11(b). The shaded region represents
the emulated bandwidth at the bottleneck link. We observe
that PIBES closely tracked and sent data along with the fluc-
tuating bandwidth, maintaining a small gap from the link
bandwidth due to the smax = 0.95 setting. In comparison,
both Salsify and WebRTC were not able to fully utilize the
available bandwidth, presumably due to their internal band-
width cap. In terms of frame delay (Figure 11(b)), Salsify
exhibited slightly lower frame delay than PIBES due to its
lower bandwidth utilization.
4G networks generally have much higher bandwidth. For

example, under normal network conditions, the 4G network
we measured offered mean bandwidth over 20Mbps. As such,
there is abundant bandwidth even for live video streaming.
Therefore, all three protocols hit their video bitrate cap under
such high-bandwidth 4G networks (Figure 11(c)). On the
other hand, we found that 4G network often exhibits larger
bandwidth fluctuations, with occasional bandwidth drops to a
very low bandwidth level. Such severe bandwidth drops will
impact delay performance as depicted in Figure 11(d), result-
ing in occasional spikes in the frame delay. In one instance,
around 26s to 27s in Figure 11(d), Salsify temporarily sus-
pended video transmission altogether due to the bandwidth
fluctuation. This result reveals a new challenge - despite

1272 VOLUME 1, 2020

FIGURE 11. Performance of PIBES, Salsify, and WebRTC over 3G (Figures 11(a)
and 11(b)) and 4G (Figures 11(c) and 11(d)) mobile networks. The link capacity is
shaded grey in Figures 11(a) and 11(c). The one-way delay is 0.02 seconds.

the high bandwidth, severe bandwidth fluctuations could
hinder the achievable performance of live video streaming
applications. This problem may very well require new cross-
layer approach to tackle the challenge of sudden bandwidth
drought, e.g., by dropping video data queued at the base
station, which warrants further investigation.

FIGURE 12. Performance of PIBES, Salsify, and WebRTC on an emulated capacity
ramp link. The link capacity is shaded grey in Figures 12(a). The one-way delay is 0.02
seconds. The lower bound for the delay of a frame is the minimum delay for a 95%
sending rate. PIBES attempts to send at a 95% sending rate in our experiments.

Due to the relatively low video bitrate caps observed in
WebRTC and Salsify, we configure the testbed’s link band-
width to match their operating range in the rest of the
experiments to allow for a fair comparison with PIBES.
c) Bandwidth ramps: In this experiment, we explicitly

ramped down and then up the link bandwidth between 2Mbps
and 4Mbps to investigate the protocols’ behavior in terms of
throughput (Figure 12(a)) and frame delay (Figure 12(b)). In
line with the previous experiment results, WebRTC exhibited
the lowest throughput. It did adapt its sending rate in accor-
dance with the changing bandwidth, but due to its internal
bitrate cap, it was not able to fully utilize the available
bandwidth.
Salsify achieved significantly higher throughput than

WebRTC during the high-bandwidth regions, and it also
quickly reacted to the bandwidth decrease from time 10
seconds to 15 seconds by adjusting its sending rate down-
wards accordingly. Moreover, it can also quickly ramp up
its sending rate when link bandwidth was increased from
25 seconds to 30 seconds. In comparison, PIBES closely
tracked the available bandwidth throughout the experiment
and responded swiftly to the bandwidth ramps. In terms
of frame delay in Figure 12(b), PIBES exhibited substan-
tially more consistent frame delay than Salsify during the
bandwidth trough from 15 seconds to 25 seconds.
d) Competing TCP traffic over a fixed capacity link: In

this experiment, we evaluate the protocols’ behavior in the

VOLUME 1, 2020 1273

HEIMBACH et al.: PIBES - COMPETING-FLOW-AWARE PROTOCOL FOR REAL-TIME VIDEO APPLICATIONS

FIGURE 13. Bandwidth-sharing with one TCP flow over a fixed capacity link. The
link capacity is shaded grey.

presence of forward competing TCP traffic over a fixed-
bandwidth bottleneck link. As shown in Figure 13, a TCP
flow entered the network at 10 seconds and terminated at
27 seconds. The throughput plot shows that PIBES reacted
quickly to the presence of the TCP flow by reducing its trans-
mission rate towards the minimum bandwidth share setting
of smin = 0.5.

Salsify also reacted quickly to the competing TCP flow. It
lowered its transmission rate even further to around 1.5Mbps,
leaving more bandwidth to the competing TCP flow (approx-
imately 2.5Mbps). A key difference from PIBES is that
Salsify does not control the amount of bandwidth to share
with the competing flow. Thus, it may suffer from severe
video quality degradation in lower link bandwidth or heavy
competing traffic scenarios. Finally, WebRTC again exhib-
ited some unexpected behavior. While it also reacted to the
competing TCP flow, its transmission rate kept on decreasing

FIGURE 14. Bandwidth-sharing with two TCP flows over a fixed capacity link. The
link capacity is shaded grey.

over time and recovered very slowly even after the TCP flow
was terminated. A slow recovery is undesirable as compet-
ing TCP flows are often short but may happen from time to
time, leading to unnecessarily low video quality in the case
of WebRTC.
To further investigate the impact of competing flows,

we performed another set of experiments with two TCP
flows entering one after the other in 10 second intervals
(Figure 14). For WebRTC, as shown in Figure 14(c), the
throughput dropped further to below 0.5Mbps once the sec-
ond TCP flow was started. By contrast, the two competing
TCP flows grabbed the majority of the available bandwidth.
This strongly suggests that WebRTC is overly conservative in
the presence of competing traffic, which is highly detrimental
for real-time video applications. Salsify performed signifi-
cantly better than WebRTC by maintaining higher throughput
when the second TCP flow was started. Nevertheless, the

1274 VOLUME 1, 2020

average throughput is still lowered by the second TCP flow,
and it also exhibited much more significant fluctuations, pre-
sumably due to interaction with the competing TCP flows.
Finally, PIBES maintained consistent throughput at around
2Mbps irrespective of whether there are one or two com-
peting TCP flows. Moreover, its throughput variation was
not impacted significantly by competing flows as in Salsify.
Smaller throughput variations will result in more consistent
video quality as the number of concurrent TCP flows is
likely to vary rapidly in a shared network.
e) Competing TCP traffic over a varying-bandwidth link:

We further experimented with competing TCP flow over
3G network. The results, depicted in Figure 15, are largely
in line with those in Figure 13 and Figure 14. WebRTC
slowly lost most of the link bandwidth to the TCP flow
and recovered very slowly. In this experiment, Salsify also
lost most of the bandwidth to the TCP flow. Compared
to the case in Figure 13, Salsify was not able to hold
onto a significant bandwidth proportion. By contrast, despite
the bandwidth fluctuations, PIBES consistently shared the
available bandwidth with the TCP flow according to the
prescribed minimum bandwidth share setting.
We observe similar behavior for WebRTC and Salsify

under bandwidth ramps as shown in (Figure 16). Both proto-
cols were dominated by the competing TCP flow, especially
during the bandwidth trough from 15 seconds to 20 seconds.
In contrast, PIBES closely tracked the minimum bandwidth
share setting from 10 seconds to 25 seconds. When the band-
width was ramped up from 25 seconds, PIBES was able to
quickly utilize the increased bandwidth while the TCP flow
kept at around the same throughput, showing that PIBES can
explore and use additional bandwidth more quickly than TCP.
f) Maintaining a minimum desired video quality: PIBES

was able to share the link bandwidth with competing traffics
according to the prescribed minimum bandwidth share in the
previous experiments. Conceivably, if the link bandwidth is
too low, then even with the minimum bandwidth share, it
may still result in throughput too low for acceptable video
quality. For this reason, PIBES was designed with a con-
figurable minimum video bitrate Rmin in (5) to guarantee
the minimum video quality. To illustrate this, we set Rmin
to 1.5Mbps and repeated the competing traffic experiment.
As shown in Figure 17, PIBES maintained the minimum
video datarate at 1.5Mbps even when the link bandwidth
dropped to 2Mbps. Naturally, the share of bandwidth for
the competing TCP flow was reduced, which is preferable
in this case as TCP is designed for transporting elastic
traffic.
g) Competing PIBES traffic: So far, the experiments were

run with one PIBES flow at a time. While this is likely to
be the case under most circumstances, it is also possible for
more than one PIBES users to share the same bottleneck
link, e.g., two users attending different online classes simul-
taneously at home. Clearly, with a minimum bandwidth share
setting of smin = 0.5, two PIBES flows will likely congest
the bottleneck link.

FIGURE 15. Bandwidth-sharing over a 3G mobile network. The link capacity is
shaded grey in (b).

One solution is to adjust smin according to the number
of PIBES flows sharing the bottleneck. For example, we set
smin = smax/N, where N is the number of concurrent PIBES
flows sharing the bottleneck and conducted an experiment
with two PIBES flows in Figure 18. We observe that the
two PIBES flows shared the available bandwidth reasonably
fairly as expected.
The above solution assumes that the number of PIBES

flows sharing a bottleneck link is known. This could be
implemented by the service provider, e.g., by comparing the
public IP addresses of the two clients or via the clients’
own discovery of one another using standard protocols such
as UPnP. The design of such mechanisms and the further
refinement of adaptation of the smin setting are subjects that
warrant further research.

V. SUMMARY AND FUTURE WORK
We developed PIBES in this work as a transport protocol for
real-time video communications. In the absence of competing

VOLUME 1, 2020 1275

HEIMBACH et al.: PIBES - COMPETING-FLOW-AWARE PROTOCOL FOR REAL-TIME VIDEO APPLICATIONS

FIGURE 16. Bandwidth-sharing on a varying bandwidth link. The link capacity is
shaded grey in (b).

FIGURE 17. Maintaining minimum acceptable video quality (set at 1.5Mbps) when
competing with a TCP flow. The link capacity is shaded grey.

traffic, PIBES performs equal to or better than existing
protocols such as WebRTC and Salsify. Once competing
TCP flows are introduced, PIBES performs substantially
better in terms of throughput as well as delay variations.

FIGURE 18. Bandwidth-sharing between two PIBES flows over a fixed capacity link.
The link capacity is shaded grey.

More importantly, PIBES offers the user/application com-
prehensive control of the video flow in terms of target
bandwidth share, minimum bandwidth share, and minimum
video datarate. This opens up new ways for applications
to fine-tune its video flow to match its desired quality of
experience.
This study is a first step in understanding the signifi-

cant impact of competing traffics on live video streaming
services. There remain many open problems which war-
rant further investigation, e.g., the impact of different TCP
variants, the impact of non-TCP competing traffics, the
challenge of sudden and deep bandwidth troughs in high-
bandwidth mobile networks, the challenge in streaming
ultra-high-definition live video (4K), and the design of more
sophisticated bandwidth sharing schemes for concurrent live
video flows.
Last but not least, although PIBES was initially designed

for real-time video communications, its key components,
including the bandwidth estimator, the competing flow detec-
tor, and the bitrate adaptation algorithm, could potentially be
applied to other types of real-time or semi-real-time services
to improve their performance in the presence of competing
traffic. Further research is warranted to explore the potential
applications.

ACKNOWLEDGMENT
The authors thank the Associate Editor and the anonymous
reviewers for their insightful comments and suggestions in
improving this article to its final form.

REFERENCES
[1] “Cisco visual networking index: Forecast and trends, 2017–

2022,” Cisco, San Jose, CA, USA, White Paper, 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

[2] “TCP optimization: Opportunities, KPIs, and considerations—An
industry whitepaper,” Sandvine, Plano, TX, USA, White Paper, 2016.
[Online]. Available: https://www.sandvine.com/hubfs/downloads/
archive/whitepaper-tcp-optimization-opportunities-kpis-and-considera
tions.pdf

[3] B. Briscoe et al., “Reducing Internet latency: A survey of tech-
niques and their merits,” IEEE Commun. Surveys Tuts., vol. 18, no. 3,
pp. 2149–2196, 3rd Quart., 2016.

[4] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
Measurement study of Google+, iChat, and Skype,” in Proc. Internet
Meas. Conf., 2012, pp. 371–384.

1276 VOLUME 1, 2020

[5] H. Alvestrand, “Overview: Real time protocols for browser-based
applications,” Internet Eng. Task Force, Internet-Draft, 2018. [Online].
Available: https://tools.ietf.org/id/draft-ietf-rtcweb-overview-19.html

[6] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and
K. Winstein, “Salsify: Low-latency network video through tighter
integration between a video codec and a transport protocol,” in
Proc. 15th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2018, pp. 267–282.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control (BIC) for fast long-distance networks,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., vol. 4. Hong Kong, China, 2004,
pp. 2514–2524.

[8] T. Kelly, “Scalable TCP: Improving performance in highspeed wide
area networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 33,
no. 2, pp. 83–91, 2003.

[9] S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[10] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end congestion
avoidance on a global Internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[11] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, archi-
tecture, algorithms, performance,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., vol. 4. Hong Kong, China, 2004, pp. 2490–2501.

[12] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and com-
parison of TCP reno and vegas,” in Proc. IEEE INFOCOM Conf.
Comput. Commun. 18th Annu. Joint Conf. Comput. Commun. Soc.,
vol. 3. New York, NY, USA, 1999, pp. 1556–1563.

[13] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison
of westwood+, new reno, and vegas TCP congestion control,” ACM
SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 25–38, 2004.

[14] S. Mascolo and F. Vacirca, “The effect of reverse traffic on the
performance of new TCP congestion control algorithms,” presented
at the Int. Workshop Protocols Fast Long Distance Netw. (PFLDnet),
2006.

[15] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP congestion con-
trol over Internets with heterogeneous transmission media,” in Proc.
IEEE 7th Int. Conf. Netw. Protocols, Toronto, ON, Canada, 1999,
pp. 213–221.

[16] Ł. Budzisz, R. Stanojević, A. Schlote, F. Baker, and R. Shorten, “On
the fair coexistence of loss- and delay-based TCP,” IEEE/ACM Trans.
Netw. (TON), vol. 19, no. 6, pp. 1811–1824, Dec. 2011.

[17] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low extra
delay background transport (LEDBAT),” Internet Eng. Task Force,
RFC 6817, 2012.

[18] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The
quest for LEDBAT fairness,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Miami, FL, USA, 2010, pp. 1–6.

[19] I. Johansson, “Self-clocked rate adaptation for conversational video
in LTE,” in Proc. ACM SIGCOMM Workshop Capacity Sharing
Workshop, 2014, pp. 51–56.

[20] X. Zhu and R. Pan, “NADA: A unified congestion control scheme for
low-latency interactive video,” in Proc. IEEE 20th Int. Packet Video
Workshop, San Jose, CA, USA, 2013, pp. 1–8.

[21] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Congestion
control for web real-time communication,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2629–2642, Oct. 2017.

[22] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and
design of the Google congestion control for web real-time commu-
nication (WebRTC),” in Proc. 7th Int. Conf. Multimedia Syst., 2016,
p. 13.

[23] S. Zhang, W. Lei, W. Zhang, and Y. Guan, “Congestion control for
RTP media: A comparison on simulated environment,” in Proc. Int.
Conf. Simulat. Tools Techn., 2019, pp. 43–52.

[24] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang,
“TCP westwood: Bandwidth estimation for enhanced transport over
wireless links,” in Proc. 7th Annu. Int. Conf. Mobile Comput. Netw.,
2001, pp. 287–297.

[25] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
pp. 20–53, 2016.

[26] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of TCP BBR conges-
tion control,” in Proc. IEEE IFIP Netw. Conf. (IFIP Networking)
Workshops, Zürich, Switzerland, 2018, pp. 1–9.

[27] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation
of BBR congestion control,” in Proc. IEEE 25th Int. Conf. Netw.
Protocols (ICNP), Toronto, ON, Canada, 2017, pp. 1–10.

[28] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic fore-
casts achieve high throughput and low delay over cellular networks,”
in Proc. 10th USENIX Conf. Netw. Syst. Design Implement., 2013,
pp. 459–472.

[29] N. Hermanns and Z. Sarker, Congestion Control Issues in Real-
Time Communication ‘Sprout’ as an Example, Internet Congestion
Control RG, Fremont, CA, USA, 2013. [Online]. Available:
https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3.pdf

[30] A. Baiocchi, A. P. Castellani, and F. Vacirc, “Yeah-TCP: Yet another
highspeed TCP,” in Proc. Int. Workshop Protocols Future Large Scale
Diverse Netw. Transp. (PFLDnet), vol. 7, 2007, pp. 37–42.

[31] S. Cho and R. Bettati, “Adaptive aggregated aggressiveness control
on parallel TCP flows using competition detection,” in Proc. 15th
Int. Conf. Comput. Commun. Netw., Arlington, VA, USA, 2006,
pp. 237–244.

[32] S. Cho and R. Bettati, “Gen05-5: Use of competition detection in TCP
for fair and effective utilization of network bandwidth,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), San Francisco, CA, USA,
2006, pp. 1–6.

LIOBA HEIMBACH received the B.Sc. degree in
electrical engineering and information technology
from ETH Zurich, Switzerland, in 2020, where she
is currently pursuing the M.Sc. degree in electri-
cal engineering and information technology. She
has worked on Internet protocols and financial
technologies.

LINGFENG GUO received the B.Eng. degree in
software engineering from Sun Yat-sen University,
Guangzhou, China, in 2016. He is currently pur-
suing the Ph.D. degree with the Department of
Information Engineering, Chinese University of
Hong Kong, where he participated in the research
and development of Internet protocols.

RUDOLF K. H. NGAN received the B.Sc. degree
in physics from the Chinese University of Hong
Kong in 1995 and the M.Sc. degree in computer
science from the City University of Hong Kong in
2016. He has been working as a Research Assistant
with the Department of Information Engineering,
Chinese University of Hong Kong since 2000.

JACK Y. B. LEE (Senior Member, IEEE) received
the B.Eng. and Ph.D. degrees in information engi-
neering from the Chinese University of Hong
Kong, Hong Kong, in 1993 and 1997, respectively,
where he is with the Department of Information
Engineering. His research group focuses on
research in multimedia communications systems,
mobile communications, protocols, and applica-
tions. He specializes in tackling research chal-
lenges arising from real-world systems. He works
closely with the industry to uncover new research

challenges and opportunities for new services and applications. Several of
the systems research from his lab have been adopted and deployed by the
industry.

VOLUME 1, 2020 1277

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

